The Influence Function of Stahel-donoho Type Methods for Robust Covariance Estimation and Pca
نویسندگان
چکیده
Principal component analysis (PCA) is a popular technique to reduce the dimension of the data at hand. Since PCA is based on the empirical variance-covariance matrix, the estimates can be severely damaged by outliers. To reduce these effects, several robust methods were developed, mostly by replacing the classical variance-covariance matrix by a robust version. In this paper we focus on Stahel-Donoho type covariance estimators and on ROBPCA, a recent method for robust PCA. In this paper we derive their influence functions. They give us some theoretical insight in the robustness of the estimators and they allow us to compute asymptotic efficiencies. As an application we also derive the influence function of a robust partial least squares regression method based on robust covariance estimators.
منابع مشابه
On the Stahel-Donoho Estimator and Depth-weighted Means of Multivariate Data
Depth of multivariate data can be used to construct weighted means as robust estimators of location. The use of projection depth leads to the Stahel-Donoho estimator as a special case. In contrast to maximal depth estimators, the depth-weighted means are shown to be asymptotically normal under appropriate conditions met by depth functions commonly used in the current literature. We also confirm...
متن کاملOn the Stahel–donoho Estimator and Depth-weighted Means of Multivariate Data By
The depth of multivariate data can be used to construct weighted means as robust estimators of location. The use of projection depth leads to the Stahel–Donoho estimator as a special case. In contrast to maximal depth estimators, the depth-weighted means are shown to be asymptotically normal under appropriate conditions met by depth functions commonly used in the current literature. We also con...
متن کاملAlmost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples
Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...
متن کاملA Robust Partial Least Squares Method with Applications
Partial least squares regression (PLS) is a linear regression technique developed to relate many regressors to one or several response variables. Robust methods are introduced to reduce or remove the effect of outlying data points. In this paper we show that if the sample covariance matrix is properly robustified further robustification of the linear regression steps of the PLS algorithm become...
متن کاملRobust state estimation in power systems using pre-filtering measurement data
State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...
متن کامل